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p-ADIC COMPUTATION 
OF REAL QUADRATIC CLASS NUMBERS 

J. BUCHMANN, J. W. SANDS, AND H. C. WILLIAMS 

ABSTRACT. Let X be any real quadratic field and let h% be the class number 
of Z. A method utilizing the p-adic class number formula for X is de- 
scribed for evaluating he. The technique was programmed for a micro VAX 

6 
II computer and run on all fields X with radicand < 10 

1. INTRODUCTION 

Let X be any real quadratic field with discriminant d. In 1965 Slavutskii 
[5] advocated the use of p-adic methods for determining the class number h- 
of Z. He first showed that h. < V7 and then exhibited a formula which 
could be used to determine hli (mod p') for any prime p t d . Thus, if 
p1 > v and we have determined by this formula the value of h , modulo p1, 
then the exact value of h5, is easily deduced. The purpose of this paper is to 
discuss a large-scale computer implementation of a much modified version of 
this idea. We determine a somewhat better bound on h. , a simpler version of 
Slavutskii's p-adic formula for finding hx (mod p) when p t d, and describe 
an efficient computer algorithm for finding heI While this technique works 
reasonably well for smaller values of d, the main difficulty is that the method 
is of time complexity O(d' +8) for any c > 0. Thus, for larger values of d the 
method is much less efficient than other available procedures for determining 
h% (see, for example, the survey paper of Mollin and Williams [4]). 

We first set D = d when d 1_ (mod 4) and D = d/4 otherwise. That is, 
D is the (square-free) radicand of X. Now 

(1.1) h,= 2log1 L(1, x) 

where 81 is the fundamental unit of X and L(1, X) is the Dirichlet series 
given by 

00 

L(1, x) = EX(n)ln 
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where x(n) = (d/n) with (d/n) being the Kronecker symbol. If we refer to 
the upper bounds on L(1, x) given in Stanton, Sudler, and Williams [6], we 
see that for D > 100 we get 

J (logD)/4 + 1.3 (d = 4D), 
(1.2) L(1, X) < (logD)/2 +.33 (d = D 1 (mod8)), 

'((log D)/6 + .87 (d = D 5 (mod8)). 
By using (1.1) and (1.2) we can prove 

Theorem 1.1. If X is any real quadratic field with class number h, and radi- 
cand D, then 

h v < T/2 + 2vi/ logD. 
Proof. If D < 100, we can verify the theorem directly. Suppose D > 100. If 

2 2 d = 4D, then Ed = r + sVi (r, s E Z) and r _ s D = ?1; hence, 

since 1- > 1 - (2D - 1) 1, it follows that 

logeI > log v + log(2 - (2D - 1) . 

By (1.1) and the first case of (1.2) we have 

h <V ( (logD)/4+ 1.3 1i )1 + 2 
(log D)/2 + log(2 - (2D - ) J 2 logD 

By noting that = r + seV (r, s E Z) when d- 1 (mod 8), and e - 

(r + s v'T)/2 (r, s E Z) when d _ 5 (mod 8), the result can be proved in 
these cases by an argument similar to the above. n 

Now h,. is odd if and only if D is a prime, or D=2q, or D = qr, where 
q, r are primes such that q _ r -1 (mod 4). Thus, if we want to know the 
value of h, we need only determine the parity of it by factoring D and then 
find the value of h (mod p) for some odd prime p > V/D/4 + Jl/ logD. 
Given these results, it is a simple matter to find a positive integer congruent to 

h. (mod 2p), and since 2p > VD/2 + vD/(2logD) > h , this must be the 
value of h . In the next sections we will discuss how to find the value of h 
(mod p). 

2. THE P-ADIC CLASS NUMBER FORMULA 

In preparation for applications, we state the p-adic class number formula 
of Leopoldt [3] and derive the relevant consequences. Our treatment follows 
Washington [9], where the proof and other references can be found. The details 
of obtaining the correct sign are due to Amice and Fresnel [1]. 

Let X be any totally real abelian extension of the rational number field Q, 
C D X, and let x run through the corresponding group of primitive even 
Dirichlet characters. Put n = [X Q] and d equal toethe discriminant of X. 
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Choose an integral basis w) ,..., (on for the ring of integers 02 of X and 
fundamental units cll..., enl of Of- so that R((X) = det1 ,(log Ic6'WI) > 0 

and V7 = detk M(wt)(l) > 0. Now fix a prime number p and an embedding 
of the algebraic closure of X into Cp, the completion of an algebraic closure 
of the p-adic field Qp. The p-adic regulator of X is defined by Rp (X) = 

deti j(logP(.(j))) . Finally let hX be the class number of X and Lp(sx) be 
the p-adic L-function for the primitive Dirichlet character X. 

Theorem 2.1 (p-adic class number formula). For the values of Rp (X), hk, and 

Lp( 1, x) defined above, we have 

2 h, (RP )\) = I '(1- x(P)P ) Lp(1, X) . 

Corollary. Assume (p, 2d) = 1, and pn I/Rp(X) is integral. Then thefollow- 
ing congruence holds between integral elements of Cp: 

h~ln1f11X (P) 17X x(a)(1 1 (mod p). 
RPT )2 X 4l X71 1 <a<pd P 

(a ,p)=I 

Proof. From the theorem, we immediately have 

p n-1 V rLp0 lX)8 

X R(,T)2 n-1 xI P V-%(P) 

For each X : 1 , the term Lp ( 1, X)/(p - %(p)) is p-integral when (p, 2d) = 1, 
as seen in [9, p. 60]. More specifically, this reference shows that this term is 
congruent to 

(1~~i ( lo~gp (a) 
-x(p)Lp(l, X) -x(P)LP(0O X) -x(P) d X (a) ( p 

(a ,p)=l 

= X P) S X(a) (o ) (d <a<pd ( P ) 

(a ,p)=I 

The last congruence follows from 

_log (ar'1) -ipi2) 

logP(a) p I -logP(ap I) 1-ap (modp), 

since a' _ 1 mod p. Multiplying over all X :$ 1 yields the result. 5 

Now let X be a real quadratic field with discriminant d > 0, and assume 
from now on that p is an odd prime not dividing d. Thpre is only one character 
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x : 1 , given by %(a) = (d/a) . Let the fundamental unit be c = (t + uV7)/2, 
chosen so that 81 > 1 in order to have R(X) = log(cl) > 0. The norm of the 
fundamental unit is N(c1) = ?I1. 

The following result is well known. 

Lemma 2.1. Write 6P x(P) = (T+ U )12 with T, U E Z. Then U 0 and 
T =- 2N(c 1)(x(p) - 1)/2 ( mod p). 

Proof. First, 

16 
( 2 ) (t + Z(p)uv@) 2 mod p 

When Z (p) = -1, we have 

(T + UV) (t - uI) (t + uV'h (op) 
2 - 2 2 (mod p), 

and this leads to the congruences T -2N(,c), U 0 (mod p). 
When x(p) = 1, the result follows from 61P- (modp). E 

Now we compute Rp(X) = logp(cP X(P))/(p - x(p)) . The lemma allows us 
to use the power series for logP in the computation: 

logP (i2 + 2u ) = logp(1 + UT' 1v') + log ( 2) 

-I 
i- (X(p)-1)/2T2. -UT vd? N(c )x~1) 2 1 (modP) 

Hence RP(X)/p is integral and congruent to 

-x () (UT-V/H? N(i)(x(P)>1)12T/2- 1) (mod ) 

Multiplying the congruence in the corollary by this factor and a factor of 
2X(p),-, we have 

- 2h ( C Id + (N(l ) 1)/2 T/2 - 1) v) 

1<a~d ( ..~l)(mod p), I <a<p d( P- 
(a, p)= l 

when RP(X)/p is a p-unit. When RP(X)/p is not a p-unit, the congruence 
also holds, but is not very useful. Notice that this is now a congruence in X, 
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so we may conclude that 

-2h%(f T' d)- , X(a) ( (mod p) 
p I~~<a<pd / 

(a, p)= l 

(and (N(c1 )(x(P)- 1)/2 T/2 - 1)/p = 0) 
Next we will simplify the sum on the right-hand side of the congruence. 
Let L(a) = ((1 - aP ')/p) when (a, p) = 1, and L(a) = 0 otherwise. 

Clearly 

L(a) _ L(a') (mod p) for a a' (mod p2). 

Since L(a) (logp(a)/p) (modp), we also have L(ac) L(a) + L(c) (modp), 

for (ac, p) = 1. Putting Y(b) = Zp- I L(b + k d) yields 

IT d 
(2.1) -2hXI (-T_ d) -Ex(b)Y (b) (mod p) . 

p ~~~b=1 

Lemma 2.2. If b b' mod p, then Y(b) _ Y(b') (mod p). 

Proof. First, 

(b) _L( fi (b+kd) (modp), 
O<k<p- 1 

(p, h-- dk)= I 

by the logarithmic property of L. Now 

fJ (X+(b+kd)) Xp' + f (b+kd) (modpX) 
O<k<p-1 O<k<p-I 

(p. h+k d)= 1 (p, b+k d)= I 

in Z[X]. If b' = b + rp, set X =rp to obtain 

H (b' kd)- fJ (b+kd) (modp2). 
O<k<p-I O<k<p-I 

(p, h+k d)=l (ph+kd)=I 

The result follows. O 

Corollary. Let c = c(b) be the smallest positive integer such that b 
cd (modp). Then 

5(b)=L ((c + k) - L(d) (mod p). 
O<k<p-I 
(p, .(+k)= I 
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Proof. We have 

5(b) 5(cd)= A, L(cd +kd) _ (L(c+k)+L(d)) 
O<k<p-1 O<k<p-1 

(p,cd+kd)=1 (p,c+k)=I 

_L ( (c+k) -L(d) (modp). n 
O<k<p-1 
(p, c+k)= 1 

The next result is easily derived from the work of Glaisher [2]; however, since 
there is a simple, self-contained proof, we present it here. 

Proposition 2.1. If p is a prime, then 

fJ (c+k) _ (p- 1)! I +p j (modp2). 
O<k<p-1 1<j<c-1J 
(p ,c+k)=I 

Proof. We have 

11 (c+k)= (P i(p+ i)(p+2)...(p+c- 1) 
0?k~p-I (C- ) 
(p ,C+k)=1 

-- (C- )! ( )!+p E J 

(C ) I E ( d) 
1?j <jc-1 

Define 

1<b<d-1 I <1j<c(b)-1 

Then we may summarize our results as follows. 

Theorem 2.2. For the values of U, T, and S defined above we have 

2h (-T- Id) _S (modp). 
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Proof. By (2.1), 

U d 

-2hz ( r-T d Z -X(b)Y(b) 
b=i1 

d1 
_E (b) IL fJ (c+ k) -L (d) 

b=1 O<k<p- 1 
(p, c+k)=1 

(by the Corollary to Lemma 2.2) 

=Zx(b) 
L (c+k) 

b= 1 O k<p-1 
d [ (p, c7k)=I JJ 

d 

-b=(b)L((P-l)! (i+PZ})) 
b=l l<j<c-1 

(by Proposition 2. 1) 
d ~ ~ ~ 

_Z x (b) [L((p1 P -)!) + L + (+P j 
b=l l<j<c-l 

d 

Zbl t ( E yL) ]p(mod p). 
b=l 

~ ~ - 

Since L(1 + pk) k (mod p), we have our result. o 

3. ALGORITHM TO DETERMINE T- U/p (mod p) 

Define tk, ukeZ by t1=t, u1=u,and 

(3.1) tk+ Uk =d 
k (t +U/) 

If we put m = p - X(p), then T =tm U = um . In this section we will show 
how the value of T 1 U/p (mod p) can be efficiently computed. 

We first consider the continued fraction expansion of (d + /d-)/2. We put1 

PO = d, Q0 = 2, q0= [(d + ? i )/2], and define 

pi+= qiQi - Pi' 

Q+1= (d - P /Q2 , 

W7+e [(Pi+u + s[] odnt (i = ie p, 2, . a. 

We use [a] to denote the integer part of ax 
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There must be some minimal 1 > 1 such that either P = P1 or Q = + 
(see, for example, Theorem 2.2 of Stephens and Williams [7]). In the first 
case we have N(,c) = 1, and in the second N(,c) = -1. Also, if B-2 = 1, 

B1 = 0, and we define B1+ ql+I B1 + Bir (mod p 2), we get 
1~~~~~~ 

u=B _1(B2 +?B) (modp ), 
Q 2 2 2 

t _Q IBy + QiB.2 + uP (mod p) 

when N(,c1) = 1, or 

2 2 2 
u- B + BJ1 (mod p) 

t-=P u + Q_ B11B? + Q1Bj1lBj2 + (P +1 - Pj)BJBJ-2 (mod p2) 

when N(,c)=-1. 
Thus, by making use of the continued fraction algorithm, we can easily com- 

pute N(c 1) and the values of t and u ( mod p2) . This process is of complexity 
O(d' /2+E) 

We next show how to compute Un /p (mod p). By using (3. 1) we can easily 
prove the following simple identities: 

(3.2) t2n = - 2N(c1 )n, 

(3.3) t2(n+s) = t2nt2 - t2(n-s) 

(3.4) dutun = 2tn+2 -t2tn. 

Let (bob1b2' bk)2 be the binary representation of m/2 (bJ = 0, 1; j = 

0,1, 2, ..., k). pUt2 O= {2, t4} (mod p2) and deduce Y,+ from 3, = 

{A, B} (mod p) by 

{A2 - 2, AB - t2} (mod p2) when b+ -0 

{AB - t2, B _ 2} (mod p) when b1,- =1. 

Note that if we put so = bo = 1 and s,+ = 2s, + bi+, ,we can easily prove from 
(3.2) and (3.3) that 

3, = {tJ, tJ+21} (mod p2), 

where j= 2s,. Thus, ok = { tn+2} (mod p2) . From (3.4) we find that 

(3.5) dutun/p (2tn+2-t2tn)/p (mod p). 

2We use {a, b} (mod in) to denote the set of residues {a (mod in), b (mod n)}. 
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By (3.5), Theorem 2.2, and Lemma 2.1 we have 

(3.6) h v-lutN(c)(x-l)/2S (mod p), 

where X = %(p), 

Vm (2tm+2 - t2tm)/p (mod p), 

and p t vm . If pIvm, then another value of p must be selected and the algo- 
rithm executed again. Notice that the complexity of evaluating vm (mod p) 
(given u and t) is 0(m8). 

4. SOME RESULTS CONCERNING S (mod p) 

Define 

c(b) - I 

(4.1) W(b)- E -. (mod p). 
j=1 

By Theorem 2.2 we know that 

d-1 

(4.2) S = - E X(b) W(b) (mod p). 
b=1 

Unfortunately, the evaluation of S is a process of complexity O(d' +8) While 
we are unable to improve upon this complexity measure for evaluating S 
(mod p), we can improve somewhat the process implied by using (4.2) to com- 
pute S (mod p). We will do this by evaluating the sum in a different order 
than that indicated by (4.2)-an order that will eliminate the need for deter- 
mining %(b) by using the expensive (in our application) quadratic reciprocity 
technique. In order to do this, we need to prove some simple results concerning 
S. 

k Let d = 2 Q, where 2 t Q. Wecanonlyhave A = O, 2, 3 and Q = Ilk7J qi 1 
where the qi (i = 1, 2, ... , k) are distinct odd primes. Let gi be a primitive 
root of qi and define hi by 

hi-g, (mod qj), hi 1 (mod d/qi). 

If A :A 3, put ho = 1; otherwise set 

ho-5 (mod 8), ho-1 (mod Q). 

We are now able to prove 

Lemma 4.1. Let M be a reduced system of residues module d. If r E A, then 

k 

(4.3) r_ (-0 11 hfl (mod d),O 
i=o 
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where 0 < fo < 1, 0 < /Ji < qi - 2 (i = 1, 2, 3, ... , k), a = 0 when i = 0, 
and 0 < a < 1 when i > 0. 

Proof. Let 59 be the set of all distinct values of r modulo d which satisfy 
(4.3). If r, r' are given by (4.3), then 

k ,k 

r r_(l) h#, (mod d),~ r _(-1)QH: (mod d) 
i=O i=O 

If r _ r' (mod d), it is easy to verify from the construction of the hi values 
that e-=a a' (mod 2), 5 fl0o = (mod 2), and /3, _ f3' (mod qi- 1) (i = 

1, 2, ... , k). Thus, 1?I = (d). Since all the elements of 5' are relatively 
prime to d, we must have R = 5?. El 

Now X(r) = X(d - r); hence, if r is given by (4.3), we get 

k 

X(r) = j7Jx(h1):' 
i=0 

Also, 

%2h (h)( 1)( I)2) ((h, - I)2) (h 

and 

(hi (hi)( hi ) (hi)=-1 (1<i<k). 

If A O, then hi 1 (mod 4) and 

%(hi)= (h)(Q 

If A= 3, then 

(h (2) (h) ={ (hQ), 1 < i < k, 
1h Q (21ho),~~ =0. 

Thus, no matter what the value of Ai, we get y(hi) = -1 (i = 0, 1,2,..., k). 
It follows that if r is given by (4.3), then 

(4.4) X(r) =(-1)', 

where t = k 
We now need 

Lemma4.2. For W(b) defined by (4.1) we have W(d -b) _ W(b) (mod p). 
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Proof. Put c' = c(d - b), c = c(b); then c' = c(d - b) =- d-(d - b) 
l-cdlb=--lc (modp);hence, c'=p+1-c,andwehave 

p-c 

W(d -b) E (modp). 
j-I 

Now 

E -.+ E 1-. 0 (modep 
j=l i j=p-c+l 

It follows, then, that 

p-i c-i 

W(d- b)- Z 1 1- A . _ W(b) (mod p) 
j=p-c+i i=i _ 

Define A to be the set of all the distinct values of r (mod d) given by 
(4.3) when we fix a = 0, and let M2 be the set of all the distinct values of r 
(mod d) given by (4.3) when we fix a = 1 . From Lemma 4.2 we can deduce 

Theorem 4.1. If A > 0, then S --2 ErEW W(r)X(r) (mod p). 

Proof. By Lemma 4.1 we know that 

S -- E W(r)X(r) - Z W(r)X(r) (mod p). 
rEWl rEM, 

Now r E $I if and only if d - r E M2; hence, 

S- A: W(r)X(r) - A W(d - r)X(d - r) (mod p) 
rE-J, rEW, 

-2 Ej W(r)X(r) (mod p) 
rEW1 

by Lemma 4.2. n 

Put T -ErEA W(r)X(r) (mod p). Since S = -T (mod p) when A = 0, 
and S --2T (mod p) when A > 0, we see that we can easily evaluate S 
(mod p) once we know T (mod p). 

In the next section we provide a simple computer algorithm for calculating 
T (mod p). 

5. COMPUTER IMPLEMENTATION AND RESULTS 

By using some of the results derived in ?4, we can now present our algorithm 
for determining T (mod p) . 
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Algorithm 5.1. 

(1) Input d, p, k, ho, h1, q1 (i = 1, 2, 3,..., k). 

(2) Put i +- k, r +- 1, T +- W(1) (mod p), X +- 1, 

bo ( 1, jo ' O. bi ( ql -2, jm ?(m =1, 2, 3, ..., k). 
(3) Perform the following steps as long as i > 0: 

(a) If j, < bl, then put 

ji ' ji + 1 
r +- rh, (mod d) 

(*) T - T+XW(r) (mod p) 
x '- -% 
i k 

go to (a) 

(b) If j1 = b1, put 
j 0 

x '- -% 
r +- rh, (mod d) 

i -i - 1. 

(4) Output T. 

bi This algorithm is correct because bi is odd (i = 0, 1, 2, ... , k) and h. 

hi (mod d); thus, we see that each value of r and X used in (*) is such that 
k ~ ~ ~~~~~tk r nik=_ hj1 (mod d) and X= (-1), where t = Ei0= ji, for the (k + 1)-tuple 

(IO il, ...I, 1k) in memory at the time (*) is evaluated. Furthermore, at (*) 
the (k + 1)-tuple (J0, Il **k) (0 < ji < bi; i = 0, 1, 2,.. ,k) will take 
on each possible set of values exactly once. 

We have not yet considered the problem of evaluating W(r) in Algorithm 
5.1. We define Y(j) JZ-f 1/i (mod p) . It is clear that 

(5.1) W(n) _ Y(j) (modp) 

when j _ n d' (mod p). Thus, in order to evaluate W(r), we first tabulate 
and store in memory (in a precomputation process antecedent to Algorithm 
5.1) all the values of Y(j) (mod p) (j = 0, 1, 2, ..., p - 1) . Notice that the 
values of Y(j) are independent of the value of di, hence, if a large table of 
class numbers is to be produced, we need only compute the table of Y(j)'s once 
for each p . For a given d value we use this table and (5. 1) to produce a table 
of values for W(n) (n = 0, 1, ... , p - 1). To evaluate W(r), then, simply 
involves a table look-up once r has been reduced modulo p. 

All of the algorithms discussed here were implemented in Assembly Language 
on a Micro VAX II Computer in the Department Qf Computer Science at the 
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University of Manitoba. During the course of running this program, it was 
discovered that the part of the loop which was used to compute T (the com- 
putation of T was by far the most expensive of the routines) which was most 
time consuming was the evaluation of r (mod d). We improved this process 
by using the following technique. 

We select a value of w E Z such that 2w < J@ < 2W+1 . For each hi we 
tabulate 

a=~ {Xi,(j) Ij =0, 1, 2, ..,[d12 W ] 
and 

Yi f Zi(j)lj 0, I, 2,. 2w - II. 

Here, Xl(j) is the least positive residue of 2whlj (mod d), and Zi(j) is the 
least positive residue of hij (mod d). This tabulation is also done in the 
precomputation phase described earlier. Each of these tables has about Id 
entries, and there are 2k = O(log d) of them. For each r it is easy to find q, 
s such that r= 2Wq+s (O< s <2w). Since r < d, we have q < [d/2w]; 
also, hi r = 2u'qhl + sh i; hence, the value of hi r reduced modulo d is either 

n = Xl(q) + Zi(s) (n < d) or n-d (n>d). 
This table look-up process eliminates the need to do the expensive multiplication 
(by hi) and division (by d) to obtain the new r value. 

Our program was run for all square-free values of D < 106 ; a table, similar 
in format to that of Wada [8], has been deposited in the UMT File. This table 
gives the values of hJ, and N(eI) for each square-free D < 10 . For values of 
p we used 331, 337, 347, 349, and 353. Extra values of p were needed in those 
cases in which we found that the first prime (or primes) actually divided vm 
in (3.6), making the determination of v-1 impossible. For example, the first 
prime used (331) divided vm about once in every 100 values of D considered. 
Also, since the evaluation of vm is cheap compared to that of T, we always 
computed vm first in order to find a value of p such that p t vm . For small 
values of D the method executed quite rapidly; for example, only 18.5 minutes 
of CPU time were needed to find all the class numbers for all the D values 
such that D < 104. However, to find the class numbers for all the values of D 
between 998001 and 1000000 required about 10.5 hours of CPU time. In fact, 
near the upper end of our range it could take as long as 35-40 seconds to find 
h, for certain values of D. Of this time only about a fraction of a second was 
spent in finding vm (mod p). 

For the purpose of comparison we mention that the algorithm of Lerch, as 
implemented by Williams and Broere (see [4] for references), computed the 
values for hX for all values of D < 150, 000 in about 7 hours of CPU time 
on an IBM 370-158 computer. (This is the largest table in existence for which 
there is some published account; A. 0. L. Atkin (see [4]) is said to have produced 

6 a table up to 4 x 106.) To accomplish this same task, our algorithm requires 
62 hours on the Micro VAX II. Although it is difficult to compare different 
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machines, it is fair to say that the speed of the arithmetic of the IBM 370-158 
is less than 9 times the speed of the Micro VAX II; thus, we see that even 
up to 150,000 the method of Lerch is more efficient than our method. Also, 
since the Lerch technique is of complexity O(D1/2+6), it would be even better 
for larger values of D. However, we should mention here that our algorithm, 
unlike the Lerch algorithm, is quite simple to program and does not require 
any approximations to transcendental functions or floating-point arithmetic. In 
conclusion, we see that this technique works reasonably well for small values of 
D, or even isolated larger values of D; however, for computing large tables it 
is much slower than the methods mentioned in [4]. 
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